
Mates8.v8.4.3 2014/05/02 Page: 1/6

This time classes remain the same four: exprParser, RPN_Stack, Config and msg8.
But current version (8.4.3) has some improvements and new functionalities.

Mates8.v8.4.3 2014/05/02 Page: 2/6

A. Client side.

As you may see, now, variables may be one or more characters long. Names may not contain numbers; if

there is the need to include numbers or Greek letters, then the name should be preceeded by an underscore
“_”. For example:

Mates8.v8.4.3 2014/05/02 Page: 3/6

Also (you may skip this paragraph if you will be entering all numbers in decimal base) it is possible to enter
numbers in hexadecimal, octal or binary base. To do so, the default decimal base may be overridden by the
key word &h for hexadecimal, or &o and &b, for octal and binary respectively. Once a base is overridden, the
new base prevails for any number, until another token &h, &d, &o or &b is found.

Mates8.v8.4.3 2014/05/02 Page: 4/6

B. The insides

1. Class 'exprParser'

 Private Sub nextExpr() ' - +
 Try
 nextTerm()
 Do While curOptor = optor.add OrElse curOptor = optor.substract
 Dim oStk As New StackTkn(tokenType.optor, curOptor, _
 0.0, optorPos, optoriTkn, Chr(curOptor))
 nextTerm()
 rpn1.Add(oStk) ' Add the operator to the stack
 Loop
 Catch ex As Exception
 err = ex
 End Try
 End Sub

 Private Sub nextTerm() ' * /
 Try
 nextPow()
 Do While curOptor = optor.multiply OrElse curOptor = optor.divide
 Dim oStk As New StackTkn(tokenType.optor, curOptor, _
 0.0, optorPos, optoriTkn, Chr(curOptor))
 nextPow()
 rpn1.Add(oStk) ' Add the operator to the stack
 Loop
 Catch ex As Exception
 err = ex
 End Try
 End Sub

 Private Sub nextPow() ' ^ !
 Dim sgn As Int32
 Try
 nextToken(sgn)
 Do While curOptor = optor.power OrElse curOptor = optor.modulo
 Dim oStk() As StackTkn = _
 {New StackTkn(tokenType.optor, curOptor, _
 0.0, optorPos, optoriTkn, Chr(curOptor))
 }
 If curOptor = optor.power Then ' ^
 …..
 Else
 ' %
 nextToken(sgn)
 rpn1.Add(oStk(0)) ' Add operator "%" power to the stack:
 sgn = 1
 End If
 nOpnd -= 1
 Loop
 If sgn = -1 Then
 rpn1.Add(New StackTkn(_
 tokenType.chgSgn, 0, 0.0, chgSgnPos, _
 chgSgniTkn, "-"))
 End If
 Catch ex As Exception
 err = ex
 End Try
 End Sub

As you may know from previous documents, or see in the code snippet, ‘nextExpr()’ calls ‘nextTerm()’,
‘nextTerm()’ calls ‘nextPow()’, and ‘nextPow()’ calls ‘nextToken()’. The execution only exits nextToken under
4 circumstances: the end of tokens has been reached; or an operator, a right parenthesis or an error has
been found.

Mates8.v8.4.3 2014/05/02 Page: 5/6

Schematically, nextToken() sub is:

 Private Sub nextToken(ByRef sgn As Int32, _
 Optional bHasFn As Boolean = False)
 Dim c As Int32

 Dim bNotUnary As Boolean
 Try
 sgn = 1

 Do
 If iRe < sbExpr.Length Then
 iToken += 1

retry:
 c = AscW(sbExpr.Chars(iRe))

 If c = 32 Then

 sbExpr = sbExpr.Remove(iRe, 1) : GoTo retry
 ElseIf c = 45 OrElse c = 43 OrElse c = 42 OrElse c = 47 _
 OrElse c = 94 OrElse c = 37 OrElse c = 33 Then ' O P E R A T O R

' O P E R A T O R
 …..
 ElseIf curBase = numBase.decimal AndAlso _

 ((48 <= c AndAlso c <= 57) OrElse c = 46) Then ' N U M B E R
 …..
 ElseIf …

 ….. ' BASE <> DECIMAL (HEXA, OCTAL, BINARY)
 Else
 …. ' Is a function?

 If iRe < iRe2 Then
 Dim sFnOrVar As String = LCase(sbExpr.ToString.Substring(iRe, iRe2 - iRe))
 Dim iFn As Int32 = Array.IndexOf(Config.vFn, sFnOrVar)

 If iFn > -1 Then
 ' F U N C T I O N
 ElseIf Array.IndexOf(vLogOp, sFnOrVar) > -1 Then

 ' L O G I C A L O P E R A T O R
 Else
 Dim posConst As Int32 = Array.IndexOf(Config.vConst, sFnOrVar)

 If posConst >= 0 Then
 ' C O N S T A N T

 Else

 ' V A R I A B L E
 End If
 End If

 ElseIf c = 91 OrElse c = 40 OrElse c = 123 Then ' LP
 …..

 ElseIf c = 93 OrElse c = 41 OrElse c = 125 Then ' RP

 …..
 ElseIf c = 960 Then
 …. .' (PI)

 ElseIf c = 38 Then ' 38="&"
 ….. ‘ change default numeric base
 ElseIf c = 39 Then ' 39="'" a comment

 Exit Do ' end of tokens
 ElseIf c = 95 Then ' "_"
 Dim m As Match = reVar2.Match(sbExpr.ToString, iRe)

 …..
 ElseIf c = 58 OrElse c = 247 Then ' division : ÷ OPERATORS
 Else ….. ‘ error

 End If
 End If
 bNotUnary = True

 End If
 Loop While iRe < sbExpr.Length
 If bValidate AndAlso err Is Nothing Then

 Validate(tknGnralType.EOTokens, Chr(c))
 End If
 curOptor = -4 ' End Of Tokens

 Catch ex As Exception
 err = ex
 End Try

 End Sub

Mates8.v8.4.3 2014/05/02 Page: 6/6

In words, nextToken() extracts the next token contained in the input string, i.e. in the stringbuilder sbExpr. The integer
iRe holds the current position from which sbExpr has to be analyzed and when a token is extracted, iRe is incremented
as much as the length of the token.

When there is an omitted operator, for instance sbExpr.toString = “2x”, a first token “2” is extracted and added to the
stack, “rpn1.Add(New StackTkn(tokenType.oprnd, . . .))”. The second token “x” is extracted and, then, a call to
exprParser.Validate() will determine operator “*” is missing. So, “*” will be inserted in sbExpr (“2*x”) and, without
modifying iRe, execution will branch to label “retry:” making “*” being the current token been analyzed. The same
stands for a missing power “^” operator, for example “2x2” will be read as “2*x^2” and the sequences of tokens will be
{“2”,”*”,”x”,”^”,”2”}.

If operands, as numbers, constants and variables are inmediatly added to the stack; operators defer this.
For input “2+3*x”:

 Private Sub nextExpr() ' - +
 Try
 nextTerm()  in the course of this call token “2” is added to the stack (1)

 (3) returns and curOptor is equal to optor.add, so execution enters the loop

 Do While curOptor = optor.add OrElse curOptor = optor.substract
 (4) an instance of StackTkn, oStk, of the operator “+” is generated:
 Dim oStk As New StackTkn(tokenType.optor, curOptor, _
 0.0, optorPos, optoriTkn, Chr(curOptor))
 nextTerm()  (5) token “3” is added to the stack, and curOptor contains optor.multiply
 rpn1.Add(oStk) ' (8) Add the operator ”+” to the stack
 Loop ‘ (9) exits the loop (curOptor = - 4) and returns back to the initial caller: exprParse.Parse()
 Catch ex As Exception
 err = ex
 End Try
 End Sub

 Private Sub nextTerm() ' * /
 Try
 nextPow() in the course of this call token “2” is added to the stack (1); in a second call (5) token “3” is added to the stack, and curOptor contains
optor.multiply

 (2) curOptor is equal to optor.add, so the loop is skipped:
 (5) token “3” is added to the stack, and curOptor contains optor.multiply, so execution enters the loop

 Do While curOptor = optor.multiply OrElse curOptor = optor.divide
 (6) an instance of StackTkn, oStk, of the operator “*” is generated:
 Dim oStk As New StackTkn(tokenType.optor, curOptor, _
 0.0, optorPos, optoriTkn, Chr(curOptor))
 nextPow()  (5) token “x” is added to the stack, and curOptor contains -4 (end of tokens)
 rpn1.Add(oStk) ' (6) Add the operator ”*” to the stack
 Loop ‘ (7) exits the loop (curOptor = - 4) and returns to (8) in nextExpr()
 Catch ex As Exception
 err = ex
 End Try
 End Sub

 Private Sub nextPow() ' ^ !
 Dim sgn As Int32
 Try
 nextToken(sgn)
 Do While curOptor = optor.power OrElse curOptor = optor.modulo
 …. FOR “2+3*x” ALWAYS SKIPS THIS LOOP BECAUSE THERE ARE NO POWER OR MODULO OPERATORS
 Loop
 Catch ex As Exception
 err = ex
 End Try
 End Sub

